Inactivation of the Antibacterial and Cytotoxic Properties of Silver Ions by Biologically Relevant Compounds

نویسندگان

  • Geraldine Mulley
  • A. Tobias A. Jenkins
  • Nicholas R. Waterfield
چکیده

There has been a recent surge in the use of silver as an antimicrobial agent in a wide range of domestic and clinical products, intended to prevent or treat bacterial infections and reduce bacterial colonization of surfaces. It has been reported that the antibacterial and cytotoxic properties of silver are affected by the assay conditions, particularly the type of growth media used in vitro. The toxicity of Ag+ to bacterial cells is comparable to that of human cells. We demonstrate that biologically relevant compounds such as glutathione, cysteine and human blood components significantly reduce the toxicity of silver ions to clinically relevant pathogenic bacteria and primary human dermal fibroblasts (skin cells). Bacteria are able to grow normally in the presence of silver nitrate at >20-fold the minimum inhibitory concentration (MIC) if Ag+ and thiols are added in a 1:1 ratio because the reaction of Ag+ with extracellular thiols prevents silver ions from interacting with cells. Extracellular thiols and human serum also significantly reduce the antimicrobial activity of silver wound dressings Aquacel-Ag (Convatec) and Acticoat (Smith & Nephew) to Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli in vitro. These results have important implications for the deployment of silver as an antimicrobial agent in environments exposed to biological tissue or secretions. Significant amounts of money and effort have been directed at the development of silver-coated medical devices (e.g. dressings, catheters, implants). We believe our findings are essential for the effective design and testing of antimicrobial silver coatings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biologically Green Synthesis of High-quality Silver Nanoparticles Using Scrophularia striata Boiss Plant Extract and Verifying Their Antibacterial Activities

In the present work, we demonstrate a facile way to study the biosynthesis of silver nanoparticles (Ag-NPs) with strong bactericidal properties using an aqueous extract of Scrophularia striata Boiss. The bio-reduction of Ag+ ions resulted in FCC cubic structures of Ag-NPs with spherical shapes of about 16 nm. As a main aim of the present work, the antibacterial activity of the bio-synthesized A...

متن کامل

Biosynthesis, Characterization, Antimicrobial and Cytotoxic Effects of Silver Nanoparticles Using Nigella arvensis Seed Extract

The biogenic synthesis of metal nanomaterial offers an environmentally benign alternative to the traditional chemical synthesis routes. In the present study, the green synthesis of silver nanoparticles (AgNPs) from aqueous solution of silver nitrate (AgNO3) by using Nigella arvensis L. seed powder extract (NSPE) has been reported. AgNPs were characterized by UV–vis absorption spectroscopy with ...

متن کامل

Biosynthesis, Characterization, Antimicrobial and Cytotoxic Effects of Silver Nanoparticles Using Nigella arvensis Seed Extract

The biogenic synthesis of metal nanomaterial offers an environmentally benign alternative to the traditional chemical synthesis routes. In the present study, the green synthesis of silver nanoparticles (AgNPs) from aqueous solution of silver nitrate (AgNO3) by using Nigella arvensis L. seed powder extract (NSPE) has been reported. AgNPs were characterized by UV–vis absorption spectroscopy with ...

متن کامل

Antibacterial properties of biologically formed chitosan nanoparticles using aqueous leaf extract of Ocimum basilicum

Objective(s): Chitosan nanoparticles (CNPs) were prepared based on the ionic gelation of chitoan with anionic compounds of Ocimum basilicum leaf extract. Materials and Methods: After addition of Ocimum basilicum leaf extract to chitosan solution, the physicochemical properties of the nanoparticles were determined by Field Emission Scanning Electron microscope (FESEM), Fourier Transform Infrared...

متن کامل

Recent Developments in Fouling Minimization of Membranes Modifed with Silver Nanoparticles

When incorporated in membranes, Ag0 nanoparticles are effective antifouling and antibacterial agents, arising from the presence of Ag+ ions either in solution or adsorbed onto nanoparticles. A vari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014